Perform a preliminary design for a bridge on a state highway over a large creek in rural Alabama. Produce a construction layout drawing showing profile and plan views of the bridge and approach embankments.

Traffic Information. This information is used to calculate the number of lanes and the bridge width. These calculations are frequently performed by a transportation engineer.

Rural location, flat terrain

ADT = 5000 veh/day (2-way)

% trucks = 5% (reasonable for rural area; I20/59 has 30% trucks, one of the highest in the state, for comparison)

Functional Class of highway = major collector growth rate = 3%

Hydraulic Information. This information is used to calculate the minimum required waterway opening (in square feet).

design flood = 50-year flood (this is a state route; 25-yr flood may be used for small county roads)

Q_50 (flow rate for 50-yr flood) = 25,000 cfs

WSE_50 (water surface elevation for 50-yr flood) = 245 ft

Streambed is coarse sand

Stream Profile This information is from a survey along the road/bridge centerline.

<table>
<thead>
<tr>
<th>Station</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+00</td>
<td>250</td>
</tr>
<tr>
<td>4+00</td>
<td>240</td>
</tr>
<tr>
<td>6+00</td>
<td>230</td>
</tr>
<tr>
<td>7+00</td>
<td>210</td>
</tr>
<tr>
<td>8+00</td>
<td>230</td>
</tr>
<tr>
<td>10+00</td>
<td>240</td>
</tr>
<tr>
<td>14+00</td>
<td>250</td>
</tr>
</tbody>
</table>

Design Requirements:

Design for Level of Service (LOS) “C”. No barge traffic on waterway.
1. Determine Bridge Width

ADT 4,000 veh/day average daily traffic

% trucks 5%

$E_T = 1.5$ equivalent cars per truck (1.7, 4 and 8 for freeways)

use 1.5 for level terrain
3.0 for rolling terrain
6.0 for Mountainous terrain

ADT adjusted for truck traffic $= ADT \times (1 - \%_{\text{trucks}} + \%_{\text{trucks}} \times E_T) \approx 5,125$

growth rate 3% typically varies between 1% and 5%, depending on local economy, etc.

design year 20yrs into the future

ADT in 20 years $= ADT \times (1 + \text{growth_rate})^{20} \approx 9,256$ veh/day, 2 way

peak volume factor (PVF) = 0.15
 rural: 0.12 to 0.18
 suburban: 0.10 to 0.15
 urban: 0.08 to 0.12

Design Hourly Volume (DHV) $= ADT \times \text{peak_volume_factor} \approx 1,111$ vh/hr, 2 way

Desired LOS C Desired Level of Service ("C" is typical)

For LOS "C", Allowable DHV = 1200 vh/hr for two lanes, 2-way traffic
(see LOS Characteristics handout)

Therefore, Use 2 traffic lanes

Lane Width = 12ft

Shoulder Width = 8 ft

Min. Bridge Width $= 2 \times 12ft + 2 \times 8ft + 2 \times 1.3$ ft (Jersey barrier rail) $= 42.6$ ft

ALDOT has 44ft wide standard design

shoulder width $= 44ft - 24ft - 2.6ft) / 2 = 8.7$ ft

Use 44 ft wide bridge, out-to-out
2. Calculate Bridge “Low-Steel” Elevation

low steel = lowest part of superstructure

elevation of low steel must be

 > 16ft above “under”-road for grade separations (17ft is better)
 > 2ft above WSE_50 for stream crossings
 > navigation requirement for rivers with barge traffic (set by Coast Guard)

Elevation of low steel = 245ft + 2 ft , \[\text{Elevation of low steel} = 247 \text{ ft} \]

3. Calculate Min. Waterway Opening (A_50_min)

\[V_{\text{max}} = 4 \text{ pfs for a streambed of course sand (see table below)} \]

\[A_{50 _\text{min}} = \frac{Q_{50}}{V_{\text{max}}} = \frac{25,000 \text{ cfs}}{4 \text{ fps}} \]

\[A_{50 _\text{min}} = 6,250 \text{ sf} \]

\(V_{\text{max}} \) is usually specified by someone knowledgeable in bridge hydraulics and scour. In Alabama, an ALDOT hydrologist usually visits the site and supplies \(V_{\text{max}} \). Typical values from the Army Corps of Engineers for various soil types are shown below.

<table>
<thead>
<tr>
<th>Streambed Material</th>
<th>Max. Permissible Velocity, fps</th>
</tr>
</thead>
<tbody>
<tr>
<td>fine sand</td>
<td>2</td>
</tr>
<tr>
<td>coarse sand</td>
<td>4</td>
</tr>
<tr>
<td>fine gravel</td>
<td>6</td>
</tr>
<tr>
<td>sandy silt</td>
<td>2</td>
</tr>
<tr>
<td>silty clay</td>
<td>3.5</td>
</tr>
<tr>
<td>clay</td>
<td>6</td>
</tr>
<tr>
<td>soft shale</td>
<td>3.5</td>
</tr>
<tr>
<td>soft sandstone</td>
<td>8</td>
</tr>
<tr>
<td>other sedimentary</td>
<td>10</td>
</tr>
<tr>
<td>hard rock (igneous or hard metamorphic)</td>
<td>20</td>
</tr>
</tbody>
</table>

From hand-drawn sketch of stream cross-section, \[A_{50 _\text{natural}} \sim 9,900 \text{ sf}, \text{ OK} \]

(from AutoCAD drawing, A_50_nat = 10,000 sf)
4. Locate Abutments (CL of bearings)

Use 2:1 foreslope (in the longitudinal direction at the abutments)

Try #1:

Try Abutment 1 bearing at Sta 5+00, Elev 247 (low steel elevation) And Abutment 2 at Sta 9+00, Elev 247,

From hand-drawn drawing: \(A_{50_prov’d} \approx 6800 \text{ sf} \)

From geometry using equation below: \(A_{50_prov’d} = 7,190 \text{ sf} \)

Area of a closed shape = \(\frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i) \), where point “n” is the same as point “1”.

\(A_{50_prov’d} = 7,190 \text{ sf} > 6,250 \text{ sf} = A_{50_min}, \text{ OK} \)

Try #2: try moving abutments closer to minimize cost of bridge

Abut. 1 at Sta 5+50, Abut. 2 at Sta 8+50, \(A_{50_prov’d} = 5,490 \text{ sf}, \text{ NG} \)

Use Try #1 \(A_{50_prov’d} = 7237 \text{ sf} \)

5. Select Superstructure Type & Pier Locations

400-ft-long bridge

Try spans of 130’, 140’, 130’, all BT-72 (see ALDOT Estimated Bridge Costs Sheet)

<table>
<thead>
<tr>
<th>Station</th>
<th>Elevation (top of bearing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abut 1</td>
<td>5+00</td>
</tr>
<tr>
<td>Pier 2</td>
<td>6+30</td>
</tr>
<tr>
<td>Pier 3</td>
<td>7+70</td>
</tr>
<tr>
<td>Abut 2</td>
<td>9+00</td>
</tr>
</tbody>
</table>

Superstructure Depth = 6’ Girder depth for BT-72 (ALDOT cost sheet)

Assume buildup + slab = 1’ thick

Therefore road surface elevation = 245’ + 2’ + 6’ + 1’

Road Surface Elev = 254’
6. Estimate Construction Cost of Bridge & Embankments

Bridge Cost:

Deck Area = 400ft x 44ft = 17,600 sf

Superstructure Type = Precast Concrete Girders, BT72

Max. Pier Ht = 23 ft (from sketch)

Cost/sf = $65/sf for BT72 with pier ht between 40’ to 60’ (AIDOT Estimated Bridge Cost Sheet)

Note: Our max. pier height = 22’ which is less than 40’ – 60’ typically used for BT72 girders. Should consider using more spans with shorter girders (e.g AASHTO Type III, max span = 80’)

Assume construction costs have increased at the rate of inflation

Using data from the internet, average inflation rate between 2000 and 2012 = 2.7%

Bridge Cost = 17,600sf x $65/sf x (1.027)\(^{12}\)

Estimated Bridge Cost = $1,575,000

Cost of Approach Embankments:

ADT in Year 2032 = 9,300 veh/day

Terrain = flat

From Typical Cross Section handout:

- use 3:1 fill slope from Sta 0+00 to Sta 4+00
- use 2:1 fill slope at abutment
 (use linear transition from 3:1 to 2:1 slopes between Sta 4+00 and Abut.)

Intersection of ground and top of embankment (Elev 254 ft) is at Sta -160.

Calculate side slope volumes for each of two sections:

<table>
<thead>
<tr>
<th></th>
<th>Section 1</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>h</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>b</td>
<td>42</td>
<td>38</td>
</tr>
<tr>
<td>L</td>
<td>560</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>54,880</td>
<td>32,920</td>
</tr>
</tbody>
</table>

\[V_{side_slope} = 87,800 \text{ cf} \]

For 2 sides of embankment, \(V_{sides} = 175,600 \text{ cf} \)
Volume beneath road:

\[
\text{road}_\text{width} = 40 \text{ ft} \quad (= 2 \times (12' \text{ lane} + 8' \text{ shoulder})
\]

<table>
<thead>
<tr>
<th>Section 1</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_road_section</td>
<td>156,800</td>
</tr>
</tbody>
</table>

\[\text{V_road} \quad 222,800 \text{ cf}\]

Volume in front of abutment:

\[
\text{h_fill_at\ centerline\ bearing} = 12 \text{ ft}
\]
\[\text{Sta at toe of front slope} = 526.7 \text{ ft}\]
\[\text{Length of front fill} = 526.7 \text{ ft} - 500 \text{ ft} = 26.7 \text{ ft}\]

\[\text{V_front_slope} \quad 7,000 \text{ cf}\]

Volume at corners:

(between side slope and fore slope)

Assume triangular base of width 19 ft x 2 and length 12 ft x 2 and height 19 ft

\[\text{V_corner} = 2900 \text{ cf}\]

\[\text{V_2_corners} = 5,800 \text{ cf}\]

Total Embankment Fill:

\[\text{Total Embankment Fill} = 411,200 \text{ cf}\]

\[\text{Volume Fill for Left Embankment} = 15,200 \text{ cy}\]

Construction Cost of Embankments:

Assume $7/cy for embankment fill (in 2012 dollars). Also assume the right-side embankment is the same volume (due to symmetry).

\[\text{Cost of embankments} = 7/cy \times 15,200 \text{ cy/embankment} \times 2 \text{ embankments}\]

\[\text{Cost of Embankments} = 213,000\]

Total Cost of bridge + approach embankments = $1,575,000 + $213,000

\[\text{Total Estimated Cost of bridge + approach embankments} = 1,800,000\]