Darcy's Law: \(\nu = \frac{K}{c} \)

\(\nu \) = discharge velocity through saturated soils

\(K \) = hydraulic conductivity (permeability parameter)

\(c \) = hydraulic gradient = \(\frac{\Delta h}{L} \)

\(h \) = total head = \(\zeta + \frac{\nu}{\gamma w} \)

\(\zeta \) = elevation head

\(\frac{\nu}{\gamma w} \) = pressure head

Can measure pressure head with a piezometer (open stand pipe)

\(q = \nu A \)

\(q \) = flow rate

\(A \) = cross-sectional area of soil through which flow occurs

\(L \) = distance (parallel to flow) over which \(\Delta h \) occurs
Examples:

1a. Unconfined aquifer, level

\[\Delta h = h_a - h_b = 0, \quad \Rightarrow \quad \frac{\Delta h}{h_a} = 0, \quad \Rightarrow \quad \phi = \theta = 0 \]

1b. Unconfined aquifer, inclined
\[\Delta h = h_a - h_b \]
\[q = \frac{1}{m} A = \frac{1}{\Delta z} \cdot \frac{1}{L} \]
\[\Delta h = 5 \tan \alpha \]
\[L = \frac{5}{\cos \alpha} \]
\[A = (H \cos \alpha) (1 + \text{out-of-page}) \]

\[q = \frac{K}{S} \frac{\text{tan} \alpha \cdot \cos \alpha}{H \cos \alpha} \]
\[q = \frac{K}{S} \sin \alpha \cdot H \cos \alpha \]

2a. Confined aquifer, level

\[\Delta h = h_a - h_b, \quad q = \frac{1}{m} \frac{\Delta h}{L} \quad H \quad (1 \text{ ft out-of-page}) \]
2b. Confined aquifer - inclined

\[q = \frac{k \Delta h}{S \cos \alpha} \quad \text{Head} \cos \alpha (1 + \tan \alpha) \]

3. a. Constant Head permeability test

- Adjust \(q_{in} \) until \(q_{in} = q_{out} \)
- Measure vol. of water \(Q \) flowing through soil over time \(t \).

\[Q = q \, t \]
\[Q = \frac{k \, \Delta h}{L} \, A \, t \]
\[k = \frac{Q \, L}{\Delta h \, A \, t} \]
3b. Falling Head permeability test

Let \(h = \Delta h \)

\(h_0, t_0 = \) head & time at start of test

\(h_i, t_i = \) \(i \)th reading during test

Set flow rate through soil = "flow" in standpipe at time \(t \)

\[q_{\text{soil}} = k \frac{h}{L} A, \quad q_{\text{standpipe}} = -\frac{dh}{dt} A \]

\[\frac{dh}{L} A = -\frac{dh}{dt} A \]

\[dt = -\frac{A}{k} \frac{dh}{h} \]

\[\int_{t_0}^{t_i} dt = -\frac{A}{k} \int_{h_0}^{h_i} \frac{1}{h} dh \]
\[
[t]_{t_0} = -\frac{aL}{Ak} \left[\ln h \right]_{h_0}^{h_i} \\
(t_i - t_0) = -\frac{aL}{Ak} \left(\ln h_i - \ln h_0 \right) \\
t_i - t_0 = -\frac{aL}{Ak} \ln \frac{h_i}{h_0}, \quad t_i - t_0 = \frac{aL}{Ak} \ln \frac{h_0}{h_i} \\
K = \frac{aL}{A (t_i - t_0)} \ln \frac{h_0}{h_i}
\]