We need to be able to calculate the response of a SDOF (one mode) oscillator to a general loading (earthquake history).

Review of impulse-momentum equation:

\[m \Delta \dot{v} = \int_{0}^{t_1} \left[p_i - k v_i \right] dt \]

For very small \(t_1 \), \(v_i \) will be very small (assuming at rest initial conditions) and

\[m \Delta \dot{v} \approx \int_{0}^{t_1} p_i \, dt \]

The free vibration response of the structure at the end of \(t_1 \) is

\[v_i = A \cos \omega t + B \sin \omega t \]

Applying initial conditions at \(t = t_1 \):

\[A = v(t = t_1) = 0 \]
\[B = \frac{\dot{v}(t = t_1)}{\omega} \]

Let \(\tilde{t} = t - t_1 \), then

\[v_i \approx \frac{\tilde{v}_i}{w} \sin \omega \tilde{t} \]
\[\dot{v}_i = 0 + \Delta \dot{v} \]
\[\dot{v}_i = \int_{0}^{t_1} p_i \, dt \frac{m}{w} \sin \omega \tilde{t} \]

Duhamel Integral

Let \(\tilde{v}(t) \) be the free-vibration response due to an impulse \(P(t) \) over time interval \(dt \).

\[\tilde{v}(\tilde{t}) \approx \frac{1}{m w} \int_{\tau}^{\tau + d\tau} p_i \, dt \sin \omega \tilde{t}, \ \tilde{t} = \tau + d\tau \]

As \(d\tau \) approaches 0,

\[\int_{\tau}^{\tau + d\tau} p_i \, dt = p(\tau) d\tau \]

and

\[\tilde{v}(\tilde{t}) = \frac{p(\tau) d\tau}{m \omega} \sin \omega \tilde{t}, \ \tilde{t} = t - \tau, \ \text{or} \]

\[\tilde{v}(t) = \frac{1}{m \omega} p(\tau) d\tau \sin w(t - \tau) \]
The response of the SDOF oscillator to a succession of short impulses can be calculated by summing the responses

\[v(t) = \frac{1}{m\omega} \int_0^t p(\tau) \sin \omega(t - \tau) d\tau \]

The equation above is called the Duhamel integral equation.

This equation can be evaluated for any load function using numerical integration. The first step is to rewrite the "\(\sin \omega(t-\tau) \)" term.

\[\sin(\omega t - \omega \tau) = \sin \omega \cos \omega \tau - \cos \omega \sin \omega \tau \]

Now

\[v(t) = \frac{1}{m\omega} \int_0^t p(\tau) \left(\sin \omega \cos \omega \tau - \cos \omega \sin \omega \tau \right) d\tau = \sin \omega \left[\frac{1}{m\omega} \int_0^t p(\tau) \cos \omega \tau d\tau \right] - \cos \omega \left[\frac{1}{m\omega} \int_0^t p(\tau) \sin \omega \tau d\tau \right] \]

\[v(t) = \overline{A}(t) \sin \omega x - \overline{B}(t) \cos \omega x \]

where

\[\overline{A}(t) = \left[\frac{1}{m\omega} \int_0^t p(\tau) \cos \omega \tau d\tau \right], \quad \overline{B}(t) = \left[\frac{1}{m\omega} \int_0^t p(\tau) \sin \omega \tau d\tau \right] \]

The text presents three numerical integration techniques, summarized below.

Assumed shape of function over \(\Delta t \)

<table>
<thead>
<tr>
<th>Function Shape</th>
<th>Simple Summation</th>
<th>Trapezoidal Rule</th>
<th>Simpson's 1/3 Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>(\Delta t)</td>
<td>(\Delta t)</td>
<td>(\Delta t)</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>Quadratic</td>
<td>(f(t))</td>
<td>(f(t))</td>
<td>(f(t))</td>
</tr>
</tbody>
</table>

Since we will be implementing the numerical summation on a computer (using Excel), we will use the more complicated but accurate method: Simpson's 1/3 Rule.

Simpson's 1/3 Rule:

For \(F(t) = \int f(t) \, dt \)

\[\Delta F_i = \int_{t_{i-2}}^{t_i} f(t) \, dt \approx \frac{\Delta t}{3} \left[f_{i-2} + 4f_{i-1} + f_i \right] \]

\[F_i = F_{i-2} + \Delta F_i \]
Simpson's Rule is exact if the function is a 2nd-order polynomial or less. The number of intervals must be even for Simpson's 1/3 Rule.

We can evaluate $v(t)$ now using the following equations:

$$\overline{A}(t_i) = \overline{A}_i \approx \overline{A}_{i-2} + \frac{\Delta \tau}{3m\omega} \left[p_{i-2} \cos \omega \tau_{i-2} + 4p_{i-1} \cos \omega \tau_{i-1} + p_i \cos \omega \tau_i \right]$$

$$\overline{B}(t_i) = \overline{B}_i \approx \overline{B}_{i-2} + \frac{\Delta \tau}{3m\omega} \left[p_{i-2} \sin \omega \tau_{i-2} + 4p_{i-1} \sin \omega \tau_{i-1} + p_i \sin \omega \tau_i \right]$$

$$v(t_i) = v_i \approx \overline{A}_i \sin \omega t_i - \overline{B}_i \cos \omega t_i$$

We can calculate the response of a \textit{damped} SDOF oscillator using similar equations, but with exponential decay terms included:

$$\overline{A}(t_i) = \overline{A}_i \approx \overline{A}_{i-2} e^{-2\xi \omega \Delta \tau} + \frac{\Delta \tau}{3m\omega} \left[p_{i-2} \cos \omega \tau_{i-2} e^{-2\xi \omega \Delta \tau} + 4p_{i-1} \cos \omega \tau_{i-1} e^{-\xi \omega \Delta \tau} + p_i \cos \omega \tau_i \right]$$

$$\overline{B}(t_i) = \overline{B}_i \approx \overline{B}_{i-2} e^{-2\xi \omega \Delta \tau} + \frac{\Delta \tau}{3m\omega} \left[p_{i-2} \sin \omega \tau_{i-2} e^{-2\xi \omega \Delta \tau} + 4p_{i-1} \sin \omega \tau_{i-1} e^{-\xi \omega \Delta \tau} + p_i \sin \omega \tau_i \right]$$

$$v(t_i) = v_i \approx \overline{A}_i \sin \omega \tau t_i - \overline{B}_i \cos \omega \tau t_i$$